Reactions: Observation of the Rotational Effect in the Temperature Dependence (postprint)

نویسندگان

  • Shaun G. Ard
  • Anyang Li
  • Oscar Martinez
  • Nicholas S. Shuman
  • Albert A. Viggiano
چکیده

Thermal rate coefficients for the title reactions computed using a quasi-classical trajectory method on an accurate global potential energy surface fitted to ∼81,000 high-level ab initio points are compared with experimental values measured between 100 and 600 K using a variable temperature selected ion flow tube instrument. Excellent agreement is found across the entire temperature range, showing a subtle, but unusual temperature dependence of the rate coefficients. For both reactions the temperature dependence has a maximum around 350 K, which is a result of H2O + rotations increasing the reactivity, while kinetic energy is decreasing the reactivity. A strong isotope effect is found, although the calculations slightly overestimate the kinetic isotope effect. The good experiment−theory agreement not only validates the accuracy of the potential energy surface but also provides more accurate kinetic data over a large temperature range.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

H3o/h2do + H/d Reactions: Observation of the Rotational Effect in the Temperature Dependence (postprint)

Thermal rate coefficients for the title reactions computed using a quasi-classical trajectory method on an accurate global potential energy surface fitted to ∼81,000 high-level ab initio points are compared with experimental values measured between 100 and 600 K using a variable temperature selected ion flow tube instrument. Excellent agreement is found across the entire temperature range, show...

متن کامل

Entropy generation analysis of non-newtonian fluid in rotational flow

The entropy generation analysis of non-Newtonian fluid in rotational flow between two concentric cylinders is examined when the outer cylinder is fixed and the inner cylinder is revolved with a constant angular speed. The viscosity of non-Newtonian fluid is considered at the same time interdependent on temperature and shear rate. The Nahme law and Carreau equation are used to modeling dependenc...

متن کامل

Effect of Higher Order Solvation and Temperature on Sn2 and E2 Reactivity (postprint)

The reactivity of microsolvated fluoride ions, F (CH3OH)0–2, with methyl, ethyl, n-propyl, and t-butyl bromide is evaluated over a broad range of temperatures. Significant decreases in reactivity are observed as either solvation or temperature increases. Increasing solvation increases sensitivity to the reaction barrier as revealed by a larger temperature dependence. These reactions are dominat...

متن کامل

Chemical Kinetics for Reaction of 5-Nitro-1H-benzo[d]imidazole to Produce 6-Nitro-1H-benzo[d]imidazole and Calculation of Heat Capacity of Activation

The kinetics and mechanism of the reaction of 5-nitro-1H-benzo[d] imidazole to produce 6-nitro-1H-benzo[d] imidazole was studied by employing hybrid meta-density functional theory. MPWBlK/6-31+G** level calculations were carried out to obtain energies and optimize the geometries of all stationary points along the PES, and determine the harmonic vibrational frequencies. Two transition states (TS...

متن کامل

AXIAL FLOW IN A ROTATIONAL COAXIAL RHEOMETER SYSTEM 11: HERSCHEL BULKLEY MODEL

Following recent works of several authors like Huilgol, Bhattacharya etd. and Javadpour et al., this paper is to contribute further to the literature of axial flow in a rotational coaxial rheometer. We consider axial flow of Herschel Bulkley mode1 between two concentric cylinders with the inner one rotating, while the outer cylinder is held stationary. An attempt has been made to direct the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014